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collective.celery provides the necessary bits to use Celery within Plone.

Much of the code here is based off of David Glick’s gists, Asko’s work and pyramid_celery.
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http://celery.readthedocs.org/en/latest/
http://plone.org/
https://pypi.python.org/pypi/pyramid_celery/
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CHAPTER 1

Configuration

Add the python package to your buildout eggs section:

eggs =

# Change this to celery[redis] or celery[librabbitmqg] if you want to use Redis or RabbitMQ respectiwvg
celery[sglalchemy]
collective.celery

You’ll also need to configure buildout to include the celery script in your bin directory:

parts =

scripts
[scripts]
recipe = zc.recipe.egg
eggs = ${buildout:eggs}
scripts = pcelery

Note: If you already have a scripts section, just make sure it also generates pcelery and that the eggs are correct.

Finally, configure celery by setting environment-vars on your client configuration. All variables defined there
are passed on to celery configuration:

environment-vars =

# CELERY_IMPORTS 1is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

# basic example Jjust using sglalchemy
BROKER_URL sqglat+sglite:///${buildout:directory}/celerydb.sqglite?timeout=30
CELERY_RESULT_BACKEND db+sglite:///${buildout:directory}/celeryresults.sglite?timeoyt=30
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CHAPTER 2

Creating tasks

This package comes with two decorators to use for creating tasks.
default run the task as the user who created the task
as_admin run the task as an admin

Example:

from collective.celery import task

@Qtask ()
def do_something(context, argl, foo='bar'):
pass

@task.as_admin ()
def do_something_as_admin (context, argl, foo='bar'):
pass

And to schedule the taks:

my_content_object = self.context
do_something.delay (my_content_object, 'something', foo='bar')

Or alternatively:

my_content_object = self.context
do_something.apply_async((my_content_object, 'something'), {'foo': 'bar'})

Check out calliung tasks in the celery documentation for more details.

Note: You do not need to specify a context object if you don’t use it for anything meaningful in the task: the system
will already set up the correct site and if you just need that you can obtain it easily (maybe viaplone.api).
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CHAPTER 3

Starting the task runner

The package simply provides a wrapper around the default task runner script which takes an additional zope config
parameter:

$ bin/pcelery worker parts/instance/etc/zope.conf

Note: In order for the worker to start correctly, you should have a ZEO server setup. Else the worker will fail stating
it cannot obtain a lock on the database.
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CHAPTER 4

Developing and testing

If you are developing, and do not want the hassle of setting up a ZEO server and run the worker, you can set the
following in your instance environment-vars:

environment-vars =

CELERY_ALWAYS_EAGER True

# CELERY_IMPORTS 1is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

# basic example just using sglalchemy
BROKER_URL sqgla+sqglite:///${buildout:directory}/celerydb.sglite?timeout=30
CELERY_RESULT_BACKEND db+sglite:///${buildout:directory}/celeryresults.sqglite?timeoy

In this way, thanks to the CELERY_ALWAYS_EAGER setting, celery will not send the task to the worker at all but
execute immediately when delay or apply_async are called.

Similarly, in tests, we provide a layer that does the following:

1. Set CELERY_ALWAYS_EAGER for you, so any function you are testing that calls an asyncroinous function will
have that function executed after commit (see execution-model)

2. Use a simple, in-memory SQLite database to store results

To use it, your package should depend, in its test extra requirement, from collective.celery[test]:

# setup.py
setup (name="my.package',
extras_require={
est': [
'collective.celery[test]',

1y

}I

And then, in your testing.py:

from collective.celery.testing import CELERY

class MyLayer (PloneSandboxLayer) :

t=30


http://celery.readthedocs.org/en/latest/configuration.html#celery-always-eager
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defaultBases = (PLONE_FIXTURE, CELERY, ...)

4.1 Complete APl and advanced usage
4.1.1 collective.celery Package
4.2 Changelog

4.2.1 Changelog

1.0a2 (2015-03-03)

e Initial release

10

Chapter 4. Developing and testing




CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search
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