
collective.celery Documentation
Release 1.0a1

Plone Intranet

May 14, 2015

Contents

1 Configuration 3

2 Creating tasks 5

3 Starting the task runner 7

4 Developing and testing 9
4.1 Complete API and advanced usage . 10
4.2 Changelog . 10

5 Indices and tables 11

i

ii

collective.celery Documentation, Release 1.0a1

collective.celery provides the necessary bits to use Celery within Plone.

Much of the code here is based off of David Glick’s gists, Asko’s work and pyramid_celery.

Contents 1

http://celery.readthedocs.org/en/latest/
http://plone.org/
https://pypi.python.org/pypi/pyramid_celery/

collective.celery Documentation, Release 1.0a1

2 Contents

CHAPTER 1

Configuration

Add the python package to your buildout eggs section:

eggs =
...

Change this to celery[redis] or celery[librabbitmq] if you want to use Redis or RabbitMQ respectively.
celery[sqlalchemy]
collective.celery
...

You’ll also need to configure buildout to include the celery script in your bin directory:

parts =
...
scripts
...

[scripts]
recipe = zc.recipe.egg
eggs = ${buildout:eggs}
scripts = pcelery

Note: If you already have a scripts section, just make sure it also generates pcelery and that the eggs are correct.

Finally, configure celery by setting environment-vars on your client configuration. All variables defined there
are passed on to celery configuration:

environment-vars =
...

CELERY_IMPORTS is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

basic example just using sqlalchemy
BROKER_URL sqla+sqlite:///${buildout:directory}/celerydb.sqlite?timeout=30
CELERY_RESULT_BACKEND db+sqlite:///${buildout:directory}/celeryresults.sqlite?timeout=30
...

3

collective.celery Documentation, Release 1.0a1

4 Chapter 1. Configuration

CHAPTER 2

Creating tasks

This package comes with two decorators to use for creating tasks.

default run the task as the user who created the task

as_admin run the task as an admin

Example:

from collective.celery import task

@task()
def do_something(context, arg1, foo='bar'):

pass

@task.as_admin()
def do_something_as_admin(context, arg1, foo='bar'):

pass

And to schedule the taks:

my_content_object = self.context
do_something.delay(my_content_object, 'something', foo='bar')

Or alternatively:

my_content_object = self.context
do_something.apply_async((my_content_object, 'something'), {'foo': 'bar'})

Check out calliung tasks in the celery documentation for more details.

Note: You do not need to specify a context object if you don’t use it for anything meaningful in the task: the system
will already set up the correct site and if you just need that you can obtain it easily (maybe via plone.api).

5

collective.celery Documentation, Release 1.0a1

6 Chapter 2. Creating tasks

CHAPTER 3

Starting the task runner

The package simply provides a wrapper around the default task runner script which takes an additional zope config
parameter:

$ bin/pcelery worker parts/instance/etc/zope.conf

Note: In order for the worker to start correctly, you should have a ZEO server setup. Else the worker will fail stating
it cannot obtain a lock on the database.

7

collective.celery Documentation, Release 1.0a1

8 Chapter 3. Starting the task runner

CHAPTER 4

Developing and testing

If you are developing, and do not want the hassle of setting up a ZEO server and run the worker, you can set the
following in your instance environment-vars:

environment-vars =
...
CELERY_ALWAYS_EAGER True

CELERY_IMPORTS is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

basic example just using sqlalchemy
BROKER_URL sqla+sqlite:///${buildout:directory}/celerydb.sqlite?timeout=30
CELERY_RESULT_BACKEND db+sqlite:///${buildout:directory}/celeryresults.sqlite?timeout=30
...

In this way, thanks to the CELERY_ALWAYS_EAGER setting, celery will not send the task to the worker at all but
execute immediately when delay or apply_async are called.

Similarly, in tests, we provide a layer that does the following:

1. Set CELERY_ALWAYS_EAGER for you, so any function you are testing that calls an asyncroinous function will
have that function executed after commit (see execution-model)

2. Use a simple, in-memory SQLite database to store results

To use it, your package should depend, in its test extra requirement, from collective.celery[test]:

setup.py
...
setup(name='my.package',

...
extras_require={

...
'test': [

'collective.celery[test]',
],
...

},
...

And then, in your testing.py:
...
from collective.celery.testing import CELERY
...

class MyLayer(PloneSandboxLayer):

9

http://celery.readthedocs.org/en/latest/configuration.html#celery-always-eager

collective.celery Documentation, Release 1.0a1

defaultBases = (PLONE_FIXTURE, CELERY, ...)

...

4.1 Complete API and advanced usage

4.1.1 collective.celery Package

4.2 Changelog

4.2.1 Changelog

1.0a2 (2015-03-03)

• Initial release

10 Chapter 4. Developing and testing

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Configuration
	Creating tasks
	Starting the task runner
	Developing and testing
	Complete API and advanced usage
	Changelog

	Indices and tables

