collective.celery Documentation
Release 1.0a1

Plone Intranet

May 14, 2015

Contents

Configuration 3
Creating tasks 5
Starting the task runner 7
Developing and testing 9
4.1 Complete APl and advanced usage L e 10
4.2 Changelog o o e e e e e e e e 10

Indices and tables 11

collective.celery Documentation, Release 1.0a1

collective.celery provides the necessary bits to use Celery within Plone.

Much of the code here is based off of David Glick’s gists, Asko’s work and pyramid_celery.

Contents 1

http://celery.readthedocs.org/en/latest/
http://plone.org/
https://pypi.python.org/pypi/pyramid_celery/

collective.celery Documentation, Release 1.0a1

2 Contents

CHAPTER 1

Configuration

Add the python package to your buildout eggs section:

eggs =

Change this to celery[redis] or celery[librabbitmqg] if you want to use Redis or RabbitMQ respectiwvg
celery[sglalchemy]
collective.celery

You’ll also need to configure buildout to include the celery script in your bin directory:

parts =

scripts
[scripts]
recipe = zc.recipe.egg
eggs = ${buildout:eggs}
scripts = pcelery

Note: If you already have a scripts section, just make sure it also generates pcelery and that the eggs are correct.

Finally, configure celery by setting environment-vars on your client configuration. All variables defined there
are passed on to celery configuration:

environment-vars =

CELERY_IMPORTS 1is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

basic example Jjust using sglalchemy
BROKER_URL sqglat+sglite:///${buildout:directory}/celerydb.sqglite?timeout=30
CELERY_RESULT_BACKEND db+sglite:///${buildout:directory}/celeryresults.sglite?timeoyt=30

collective.celery Documentation, Release 1.0a1

4 Chapter 1. Configuration

CHAPTER 2

Creating tasks

This package comes with two decorators to use for creating tasks.
default run the task as the user who created the task
as_admin run the task as an admin

Example:

from collective.celery import task

@Qtask ()
def do_something(context, argl, foo='bar'):
pass

@task.as_admin ()
def do_something_as_admin (context, argl, foo='bar'):
pass

And to schedule the taks:

my_content_object = self.context
do_something.delay (my_content_object, 'something', foo='bar')

Or alternatively:

my_content_object = self.context
do_something.apply_async((my_content_object, 'something'), {'foo': 'bar'})

Check out calliung tasks in the celery documentation for more details.

Note: You do not need to specify a context object if you don’t use it for anything meaningful in the task: the system
will already set up the correct site and if you just need that you can obtain it easily (maybe viaplone.api).

collective.celery Documentation, Release 1.0a1

6 Chapter 2. Creating tasks

CHAPTER 3

Starting the task runner

The package simply provides a wrapper around the default task runner script which takes an additional zope config
parameter:

$ bin/pcelery worker parts/instance/etc/zope.conf

Note: In order for the worker to start correctly, you should have a ZEO server setup. Else the worker will fail stating
it cannot obtain a lock on the database.

collective.celery Documentation, Release 1.0a1

8 Chapter 3. Starting the task runner

CHAPTER 4

Developing and testing

If you are developing, and do not want the hassle of setting up a ZEO server and run the worker, you can set the
following in your instance environment-vars:

environment-vars =

CELERY_ALWAYS_EAGER True

CELERY_IMPORTS 1is required to load your tasks correctly for your project
CELERY_IMPORTS ('my.package.tasks',)

basic example just using sglalchemy
BROKER_URL sqgla+sqglite:///${buildout:directory}/celerydb.sglite?timeout=30
CELERY_RESULT_BACKEND db+sglite:///${buildout:directory}/celeryresults.sqglite?timeoy

In this way, thanks to the CELERY_ALWAYS_EAGER setting, celery will not send the task to the worker at all but
execute immediately when delay or apply_async are called.

Similarly, in tests, we provide a layer that does the following:

1. Set CELERY_ALWAYS_EAGER for you, so any function you are testing that calls an asyncroinous function will
have that function executed after commit (see execution-model)

2. Use a simple, in-memory SQLite database to store results

To use it, your package should depend, in its test extra requirement, from collective.celery[test]:

setup.py
setup (name="my.package',
extras_require={
est': [
'collective.celery[test]',

1y

}I

And then, in your testing.py:

from collective.celery.testing import CELERY

class MyLayer (PloneSandboxLayer) :

t=30

http://celery.readthedocs.org/en/latest/configuration.html#celery-always-eager

collective.celery Documentation, Release 1.0a1

defaultBases = (PLONE_FIXTURE, CELERY, ...)

4.1 Complete APl and advanced usage
4.1.1 collective.celery Package
4.2 Changelog

4.2.1 Changelog

1.0a2 (2015-03-03)

e Initial release

10

Chapter 4. Developing and testing

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

11

	Configuration
	Creating tasks
	Starting the task runner
	Developing and testing
	Complete API and advanced usage
	Changelog

	Indices and tables

